Painlevé equations from Nakajima-Yoshioka blow-up relations

Mikhail Bershtein
Landau Institute \& Skoltech
Moscow, Russia

based on ArXiv 1811.04050 with Anton Shchechkin

18 June 2019

Isomonodromy/CFT correspondence

The Painlevé VI equation is a particular case of the equation of the isomonodromic deformation of linear differential equation.

Painlevé VI tau function

$$
\begin{equation*}
\tau(\sigma, s \mid z)=\sum_{n \in \mathbb{Z}} s^{n} \mathcal{Z}_{c=1}(\vec{\theta}, \sigma+n \mid z) \tag{1}
\end{equation*}
$$

- $\mathcal{Z}_{c=1}(\vec{\theta}, \sigma+n \mid z)$ - Virasoro conformal block with $c=1$.
- By AGT $\mathcal{Z}_{c=1}$ - 4d Nekrasov partition function $\operatorname{SU}(2)$ with $\epsilon_{1}+\epsilon_{2}=0$
- irregular singularities - irregular conformal blocks - another number of matter fields
- isomonodromic deformation of rank N linear system - W_{N} conformal blocks with $c=N-1-4 \mathrm{~d}$ Nekrasov partition function $\operatorname{SU}(N)$ with $\epsilon_{1}+\epsilon_{2}=0$.
Incomplete list of people: [Gamayun, lorgov, Lisovyy, Teschner, Shchechkin, Gavrylenko, Marshakov, Its, Bonelli, Grassi, Tanzini, Nagoya, Tykhyy, Maruyoshi, Sciarappa, Mironov, Morozov, Iwaki, Del Monte,...]

Another central charges

Question

What is the analog of the formula (1) with right side given as a series of Virasoro conformal blocks with $c \neq 1$?

Another central charges

Question

What is the analog of the formula (1) with right side given as a series of Virasoro conformal blocks with $c \neq 1$?

There are several reasons to believe the existence of such analogue for central charges of (logarithmic extension of) minimal models $\mathcal{M}(1, n)$

$$
\begin{equation*}
c=1-6 \frac{(n-1)^{2}}{n}, n \in \mathbb{Z} \backslash\{0\} \tag{2}
\end{equation*}
$$

- Operator valued monodromies commute [lorgov, Lisovyy, Teschner 2014].
- Bilinear relations on conformal blocks [MB., Shchechkin 2014]
- Action of $\operatorname{SL}(2, \mathbb{C})$ on the vertex algebra [Feigin 2017]

Today: $c=-2$ tau functions

$$
\begin{equation*}
\tau^{ \pm}(a, s \mid z)=\sum_{n \in \mathbb{Z}} s^{n / 2} \mathcal{Z}(a+2 n \epsilon ; \mp \epsilon, \pm 2 \epsilon \mid z) . \tag{3}
\end{equation*}
$$

Blow-up relations

$$
\begin{align*}
\tau(a, s \mid z) & =\sum_{n \in \mathbb{Z}} s^{n} \mathcal{Z}(a+2 n \epsilon, \epsilon,-\epsilon \mid z) \tag{4}\\
\tau^{ \pm}(a, s \mid z) & =\sum_{n \in \mathbb{Z}} s^{n / 2} \mathcal{Z}(a+2 n \epsilon ; \mp \epsilon, \pm 2 \epsilon \mid z) . \tag{5}
\end{align*}
$$

Blow-up relations

$$
\begin{align*}
\tau(a, s \mid z) & =\sum_{n \in \mathbb{Z}} s^{n} \mathcal{Z}(a+2 n \epsilon, \epsilon,-\epsilon \mid z) \tag{4}\\
\tau^{ \pm}(a, s \mid z) & =\sum_{n \in \mathbb{Z}} s^{n / 2} \mathcal{Z}(a+2 n \epsilon ; \mp \epsilon, \pm 2 \epsilon \mid z) \tag{5}
\end{align*}
$$

- [Nakajima Yoshioka 03, 05, 09], [Göttshe, Nakajima, Yoshioka 06], [MB, Feigin, Litvinov 13],
$\beta_{D} \mathcal{Z}\left(a, \epsilon_{1}, \epsilon_{2} \mid z\right)=\sum_{n \in \mathbb{Z}+j / 2} \mathrm{D}\left(\mathcal{Z}\left(a+n \epsilon_{1}, \epsilon_{1},-\epsilon_{1}+\epsilon_{2} \mid z\right), \mathcal{Z}\left(a+n \epsilon_{2}, \epsilon_{1}-\epsilon_{2}, \epsilon_{2} \mid z\right)\right)$,
D is some differential operator, $j=0,1, \beta_{D}$ is some function (may be zero).
- Now set $\epsilon_{1}+\epsilon_{2}=0$, and take the sum of these relations with coefficients s^{n}

$$
\begin{equation*}
\beta_{D} \tau(z)=\mathrm{D}\left(\tau^{+}(z), \tau^{-}(z)\right) \tag{6}
\end{equation*}
$$

Excluding $\tau(z)$ one gets system of bilinear relations on $\tau^{+}(z), \tau^{-}(z)$.

- This system can be used to prove the (Painlevé) bilinear relations on $\tau(z)$

Blow-up relations for $\mathbb{C}^{2} / \mathbb{Z}_{2}$

$$
\begin{equation*}
\tau(a, s \mid z)=\sum_{n \in \mathbb{Z}} s^{n} \mathcal{Z}(a+2 n \epsilon, \epsilon,-\epsilon \mid z) \tag{7}
\end{equation*}
$$

Blow-up relations for $\mathbb{C}^{2} / \mathbb{Z}_{2}$

$$
\begin{equation*}
\tau(a, s \mid z)=\sum_{n \in \mathbb{Z}} s^{n} \mathcal{Z}(a+2 n \epsilon, \epsilon,-\epsilon \mid z) \tag{7}
\end{equation*}
$$

- [Bruzzo, Poghossian, Tanzini 09], [Bruzzo, Pedrini, Sala, Szabo 2013], [Ohkawa 2018], [Belavin, MB., Feigin, Litvinov, Tarnopolsky 2011]

$$
\begin{equation*}
\tilde{\mathcal{Z}}\left(a, \epsilon_{1}, \epsilon_{2} \mid z\right)=\sum_{n} \mathrm{D}\left(\mathcal{Z}\left(a+n \epsilon_{1}, 2 \epsilon_{1},-\epsilon_{1}+\epsilon_{2} \mid z\right), \mathcal{Z}\left(a+n \epsilon_{2}, \epsilon_{1}-\epsilon_{2}, 2 \epsilon_{2} \mid z\right)\right) \tag{8}
\end{equation*}
$$

Here $\tilde{\mathcal{Z}}$ is Nekrasov partition function for $\mathbb{C}^{2} / \mathbb{Z}_{2}$.

- After specialization $\epsilon_{1}+\epsilon_{2}=0$ and exclusion $\tilde{\mathcal{Z}}$ we get (Painlevé) bilinear relations on $\tau(z)$ [MB., Shchechkin 2014]

$$
\begin{equation*}
\tilde{\mathrm{D}}(\tau(z), \tau(z))=0 \tag{9}
\end{equation*}
$$

So we derive (some) $\mathbb{C}^{2} / \mathbb{Z}_{2}$ blow-up equation from ordinary \mathbb{C}^{2} blow-up equations (in case $\epsilon_{1}+\epsilon_{2}=0$).

Plan of the talk

(1) Introduction
(2) Example: parameterless Painlevé equation
(3) Example: parameterless q-difference Painlevé equation
(4) Discussion

Painlevé $I I I\left(D_{8}^{(1)}\right)$ equation

Another name for this equations Painlevé $\mathrm{III}_{3}^{\prime}$.

- Toda-like form of these equation is a two bilinear equations on two functions: $\tau=\tau_{0}$ and τ_{1}. It is symmetric under $\tau_{0} \leftrightarrow \tau_{1}$.
- Painlevé III_{3}

$$
\begin{align*}
& D_{[\log z]}^{2}\left(\tau_{0}, \tau_{0}\right)=-2 z^{1 / 2} \tau_{1}^{2} \\
& D_{[\log z]}^{2}\left(\tau_{1}, \tau_{1}\right)=-2 z^{1 / 2} \tau_{0}^{2} \tag{10}
\end{align*}
$$

where second Hirota differential $D_{[\log z]}^{2}(\tau, \tau)=2 \tau^{\prime \prime} \tau-\tau^{\prime 2}, f^{\prime}=z \frac{d f}{d z}$.

Painlevé $\operatorname{III}\left(D_{8}^{(1)}\right)$ equation

Another name for this equations Painlevé II_{3}^{\prime}.

- Toda-like form of these equation is a two bilinear equations on two functions: $\tau=\tau_{0}$ and τ_{1}. It is symmetric under $\tau_{0} \leftrightarrow \tau_{1}$.
- Painlevé III_{3}

$$
\begin{align*}
& D_{[\log z]}^{2}\left(\tau_{0}, \tau_{0}\right)=-2 z^{1 / 2} \tau_{1}^{2} \\
& D_{[\log z]}^{2}\left(\tau_{1}, \tau_{1}\right)=-2 z^{1 / 2} \tau_{0}^{2} \tag{10}
\end{align*}
$$

where second Hirota differential $D_{[\log z]}^{2}(\tau, \tau)=2 \tau^{\prime \prime} \tau-\tau^{\prime 2}, f^{\prime}=z \frac{d f}{d z}$.

- Solution

$$
\begin{equation*}
\tau_{j}(a, s \mid z)=\sum_{n \in \mathbb{Z}+j / 2} s^{n} \mathcal{Z}(a+2 n \epsilon, \epsilon,-\epsilon \mid z), \quad j=0,1 . \tag{11}
\end{equation*}
$$

Here $\mathcal{Z}\left(a, \epsilon_{1}, \epsilon_{2} \mid z\right)$ - Nekrasov function for 4d pure $\operatorname{SU}(2)$ gauge theory. Here a, s are integration constants for Painlevé equation.

- In CFT notations $c=1+6 \frac{\left(\epsilon_{1}+\epsilon_{2}\right)^{2}}{\epsilon_{1} \epsilon_{2}}, \sigma=-\frac{a}{2 \epsilon_{1}}$
- The equations (10) could be rewritten as single equation on $\tau(a, s \mid z)$

$$
\begin{equation*}
D_{[\log z]}^{2}(\tau(\sigma, s \mid z), \tau(\sigma, s \mid z))=-2 z^{1 / 2} \tau(\sigma+1 / 2, s \mid z) \tau(\sigma-1 / 2, s \mid z) \tag{12}
\end{equation*}
$$

Blow-up relations

- They express instanton partition function on $\widehat{\mathbb{C}^{2}}=\left(\mathbb{C}^{2}\right.$ blowed-up in the point) as a bilinear expression on \mathbb{C}^{2} instanton partition function

$$
\begin{gather*}
\mathcal{Z}_{\widehat{\mathbb{C}^{2}}}\left(a\left|\epsilon_{1}, \epsilon_{2}\right| \Lambda\right)=\sum_{n \in \mathbb{Z}} \mathcal{Z}_{\mathbb{C}^{2}}\left(a+\epsilon_{1} n\left|\epsilon_{1}, \epsilon_{2}-\epsilon_{1}\right| \Lambda\right) \mathcal{Z}_{\mathbb{C}^{2}}\left(a+\epsilon_{2} n\left|\epsilon_{1}-\epsilon_{2}, \epsilon_{2}\right| \Lambda\right) \tag{13}\\
\mathcal{Z}_{\widehat{\mathbb{C}^{2}}}\left(a\left|\epsilon_{1}, \epsilon_{2}\right| \Lambda\right)=\mathcal{Z}_{\mathbb{C}^{2}}\left(a\left|\epsilon_{1}, \epsilon_{2}\right| \Lambda\right) \tag{14}
\end{gather*}
$$

Blow-up relations

- They express instanton partition function on $\widehat{\mathbb{C}^{2}}=\left(\mathbb{C}^{2}\right.$ blowed-up in the point) as a bilinear expression on \mathbb{C}^{2} instanton partition function

$$
\begin{equation*}
\mathcal{Z}_{\widehat{\mathbb{C}^{2}}}\left(a\left|\epsilon_{1}, \epsilon_{2}\right| \Lambda\right)=\sum_{n \in \mathbb{Z}} \mathcal{Z}_{\mathbb{C}^{2}}\left(a+\epsilon_{1} n\left|\epsilon_{1}, \epsilon_{2}-\epsilon_{1}\right| \Lambda\right) \mathcal{Z}_{\mathbb{C}^{2}}\left(a+\epsilon_{2} n\left|\epsilon_{1}-\epsilon_{2}, \epsilon_{2}\right| \Lambda\right) \tag{13}
\end{equation*}
$$

$$
\mathcal{Z}_{\widehat{\mathbb{C}^{2}}}\left(a\left|\epsilon_{1}, \epsilon_{2}\right| \Lambda\right)=\mathcal{Z}_{\mathbb{C}^{2}}\left(a\left|\epsilon_{1}, \epsilon_{2}\right| \Lambda\right)
$$

- Imposing condition $\epsilon_{1}+\epsilon_{2}=0$ we get in the CFT notations

$$
\begin{equation*}
\mathcal{Z}_{c=1}(\sigma \mid z)=\sum_{n \in \mathbb{Z}} \mathcal{Z}_{c=-2}^{+}\left(\sigma-n \left\lvert\, \frac{z}{4}\right.\right) \mathcal{Z}_{c=-2}^{-}\left(\sigma+n \left\lvert\, \frac{z}{4}\right.\right) \tag{15}
\end{equation*}
$$

We get $\quad \tau(\sigma, s \mid z)=\tau^{+}(\sigma, s \mid z) \tau^{-}(\sigma, s \mid z)$,

Recall that in CFT notation

$$
\tau(\sigma, s \mid z)=\sum_{n \in \mathbb{Z}} s^{n} \mathcal{Z}_{c=1}(\sigma+n \mid z), \quad \tau^{ \pm}(\sigma, s \mid z)=\sum_{n \in \mathbb{Z}} s^{n / 2} \mathcal{Z}_{c=-2}^{ \pm}(\sigma+n \mid z / 4)
$$

Blow-up relations 2

We get $\quad \tau(\sigma, s \mid z)=\tau^{+}(\sigma, s \mid z) \tau^{-}(\sigma, s \mid z)$,

$$
\tau(\sigma, s \mid z)=\sum_{n \in \mathbb{Z}} s^{n} \mathcal{Z}_{c=1}(\sigma+n \mid z), \quad \tau^{ \pm}(\sigma, s \mid z)=\sum_{n \in \mathbb{Z}} s^{n / 2} \mathcal{Z}_{c=-2}^{ \pm}(\sigma+n \mid z / 4)
$$

Blow-up relations 2

We get $\quad \tau(\sigma, s \mid z)=\tau^{+}(\sigma, s \mid z) \tau^{-}(\sigma, s \mid z)$,

$$
\tau(\sigma, s \mid z)=\sum_{n \in \mathbb{Z}} s^{n} \mathcal{Z}_{c=1}(\sigma+n \mid z), \quad \tau^{ \pm}(\sigma, s \mid z)=\sum_{n \in \mathbb{Z}} s^{n / 2} \mathcal{Z}_{c=-2}^{ \pm}(\sigma+n \mid z / 4)
$$

Differential blow-up relations

$$
\begin{array}{r}
\left.\sum_{n \in \mathbb{Z}} \mathcal{Z}\left(a+2 \epsilon_{1} n ; \epsilon_{1}, \epsilon_{2}-\epsilon_{1} \left\lvert\, \Lambda e^{-\frac{1}{2} \epsilon_{1} \alpha}\right.\right) \mathcal{Z}\left(a+2 \epsilon_{2} n ; \epsilon_{1}-\epsilon_{2}, \epsilon_{2} \left\lvert\, \Lambda e^{-\frac{1}{2} \epsilon_{2} \alpha}\right.\right)\right|_{\alpha^{4}}= \\
=\frac{(2 \alpha)^{4}}{4!}\left(\left(\frac{\epsilon_{1}+\epsilon_{2}}{4}\right)^{4}-2 \Lambda^{4}\right) \mathcal{Z}\left(a ; \epsilon_{1}, \epsilon_{2} \mid \Lambda\right)+O\left(\alpha^{5}\right) \tag{16}
\end{array}
$$

$$
D_{[\log z]}^{1}\left(\tau^{+}, \tau^{-}\right)=z^{1 / 4} \tau_{1}, \quad D_{[\log z]}^{2}\left(\tau^{+}, \tau^{-}\right)=0
$$

We get

$$
\begin{equation*}
D_{[\log z]}^{3}\left(\tau^{+}, \tau^{-}\right)=z^{1 / 4}\left(z \frac{d}{d z}\right) \tau_{1}, \quad D_{[\log z]}^{4}\left(\tau^{+}, \tau^{-}\right)=-2 z \tau . \tag{17}
\end{equation*}
$$

Painlevé equations from Nakajima-Yoshioka blow-up relations

$$
\begin{equation*}
\tau_{0}=\tau^{+} \tau^{-}, D_{[\log z]}^{1}\left(\tau^{+}, \tau^{-}\right)=z^{1 / 4} \tau_{1}, D_{[\log z]}^{2}\left(\tau^{+}, \tau^{-}\right)=0 . \tag{18}
\end{equation*}
$$

Theorem

Let $\tau^{ \pm}$satisfy equations (18). Then τ_{0} and τ_{1} satisfy Toda-like equation

$$
\begin{equation*}
D_{[\log z]}^{2}\left(\tau_{0}, \tau_{0}\right)=-2 z^{1 / 2} \tau_{1}^{2} \tag{19}
\end{equation*}
$$

Since we know from blow-up relations that $\tau^{ \pm}(\sigma, s \mid z)=\sum_{n \in \mathbb{Z}} s^{n / 2} \mathcal{Z}_{c=-2}^{ \pm}(\sigma+n \mid z / 4)$ satisfy (18) we proved that $\tau(\sigma, s \mid z)=\sum_{n \in \mathbb{Z}} s^{n} \mathcal{Z}_{c=1}(\sigma+n \mid z)$ satisfy Painlevé equation.

Plan of the talk

(1) Introduction
(2) Example: parameterless Painlevé equation
(3) Example: parameterless q-difference Painlevé equation
(4) Discussion

Difference equations

Painlevé $A_{7}^{(1)^{\prime}}$ equation.

- Toda-like form of these equation is a two bilinear equations on two functions: $\tau=\tau_{0}$ and τ_{1}. It is symmetric under $\tau_{0} \leftrightarrow \tau_{1}$.

$$
\begin{align*}
& \overline{\tau_{0}} \underline{\tau_{0}}=\tau_{0}^{2}-z^{1 / 2} \tau_{1}^{2} \\
& \overline{\tau_{1}} \underline{\tau_{1}}=\tau_{1}^{2}-z^{1 / 2} \tau_{0}^{2} \tag{20}
\end{align*}
$$

where $\overline{\tau(z)}=\tau(q z), \underline{\tau(z)}=\tau\left(q^{-1} z\right)$.

- Solution

$$
\begin{equation*}
\tau_{j}(a, s \mid z)=\sum_{n \in \mathbb{Z}+j / 2} s^{n} \mathcal{Z}(a+2 n \epsilon, \epsilon,-\epsilon \mid z), j=0,1 \tag{21}
\end{equation*}
$$

Here $\mathcal{Z}\left(a, \epsilon_{1}, \epsilon_{2} \mid z\right)$ - Nekrasov function for pure 5d $\operatorname{SU}(2)$ gauge theory. Here a, s are integration constants for Painlevé equation. $q=e^{R \epsilon}, u=e^{R a}$.

- The equations (20) could be rewritten as single equation on $\tau(u, s \mid z)$

$$
\begin{equation*}
\tau(u, s \mid q z) \tau\left(u, s \mid q^{-1} z\right)=\tau^{2}(u, s \mid z)-z^{1 / 2} \tau(u q, s \mid z) \tau\left(u q^{-1}, s \mid z\right) \tag{22}
\end{equation*}
$$

Blow-up relations

$$
\begin{align*}
& \tau^{+} \tau^{-}=\tau \\
& \overline{\tau^{+}} \underline{\tau^{-}}-\underline{\tau^{+}} \overline{\tau^{-}}=-2 z^{1 / 4} \tau_{1}, \tag{23}\\
& \overline{\tau^{+}} \underline{\tau^{-}}+\underline{\tau^{+}} \overline{\tau^{-}}=2 \tau
\end{align*}
$$

Theorem

Take (23), then τ and τ_{1} satisfy Toda-like equation

$$
\begin{equation*}
\bar{\tau} \underline{\tau}=\tau^{2}-z^{1 / 2} \tau_{1}^{2} \tag{24}
\end{equation*}
$$

$$
\begin{equation*}
\text { Proof: } \quad \overline{\tau^{+} \tau^{-}} \underline{\tau^{+}} \tau^{-}=\frac{1}{4}\left(\overline{\tau^{+}} \underline{\tau^{-}}+\underline{\tau^{+}} \overline{\tau^{-}}\right)^{2}-\frac{1}{4}\left(\overline{\tau^{+}} \underline{\tau^{-}}-\underline{\tau^{+}} \overline{\tau^{-}}\right)^{2} \tag{25}
\end{equation*}
$$

Since we know from blow-up relations that $\tau^{ \pm}(\sigma, s \mid z)=\sum_{n \in \mathbb{Z}} s^{n / 2} \mathcal{Z}_{c=-2}^{ \pm}(\sigma+n \mid z / 4)$ satisfy (23) we proved that $\tau(\sigma, s \mid z)=\sum_{n \in \mathbb{Z}} s^{n} \mathcal{Z}_{c=1}(\sigma+n \mid z)$ satisfy q-Painlevé equation.

For another proof see [Matsuhira, Nagoya 2018].

Chern-Simons generalization

$$
\begin{equation*}
\tau(u, s \mid q z) \tau\left(u, s \mid q^{-1} z\right)=\tau^{2}(u, s \mid z)-z^{1 / 2} \tau(u q, s \mid z) \tau\left(u q^{-1}, s \mid z\right) \tag{26}
\end{equation*}
$$

Chern-Simons generalization

$$
\begin{equation*}
\tau(u, s \mid q z) \tau\left(u, s \mid q^{-1} z\right)=\tau^{2}(u, s \mid z)-z^{1 / 2} \tau(u q, s \mid z) \tau\left(u q^{-1}, s \mid z\right) \tag{26}
\end{equation*}
$$

- In the work [MB, Marshakov, Gavrylenko 2018] there was considered generalization of the Toda-like equation (26). This generalization depends on two integer parameters $N \in \mathbb{N}, 0 \leq m \leq N$ and has the form

$$
\tau_{m ; j}(q z) \tau_{m ; j}\left(q^{-1} z\right)=\tau_{m ; j}(z)^{2}-z^{1 / N} \tau_{m ; j+1}\left(q^{m / N} z\right) \tau_{m ; j-1}\left(q^{-m / N} z\right), j \in \mathbb{Z} / N \mathbb{Z}
$$

- Here $N=2$. The solutions are given by

$$
\begin{equation*}
\tau_{m, j}(u, s \mid z)=\sum_{n \in \mathbb{Z}+j / 2} s^{n} \mathcal{Z}_{m}\left(u q^{2 n} \mid z\right) \tag{27}
\end{equation*}
$$

where \mathcal{Z}_{m} is a 5 d Nekrasov function for $S U(N)$ with Chern-Simons level m.

- Newton polygons:

Theorem

Formula (27) follows from blow-up relations for $N=2$.

Chern-Simons generalization: $m=0$ vs. $m=2$

Chern-Simons level	$m=0$	$m=1$	$m=2$
Newton polygon			
Painlevé equation	q-Painlevé $A_{7}^{(1)^{\prime}}$	q-Painlevé $A_{7}^{(1)}$	q-Painlevé $A_{7}^{(1)^{\prime}}$

Chern-Simons generalization: $m=0$ vs. $m=2$

Chern-Simons level	$m=0$	$m=1$	$m=2$
Newton polygon			
Painlevé equation	q-Painlevé $A_{7}^{(1)^{\prime}}$	q-Painlevé $A_{7}^{(1)}$	q-Painlevé $A_{7}^{(1)^{\prime}}$

- for $m=0$ and $m=2$ Painlevé equations are the same
- We have relation on the level of tau functions

$$
\begin{equation*}
\tau_{j}=(q z ; q, q)_{\infty} \tau_{2 ; j} \tag{28}
\end{equation*}
$$

- We have relations on the Nekrasov functions

$$
\begin{array}{r}
\mathcal{Z}_{2}\left(u ; q^{-2}, q \mid z\right)=\left(z ; q^{-2}, q\right)_{\infty} \mathcal{Z}_{0}\left(u ; q^{-2}, q \mid z\right), \\
\mathcal{Z}_{2}\left(u ; q^{-1}, q^{2} \mid z\right)=\left(z ; q^{-1}, q^{2}\right)_{\infty} \mathcal{Z}_{0}\left(u ; q^{-1}, q^{2} \mid z\right), \\
\mathcal{Z}_{2}\left(u ; q^{-1}, q \mid z\right)=\left(z ; q^{-1}, q\right)_{\infty} \mathcal{Z}_{0}\left(u ; q^{-1}, q \mid z\right) \tag{31}
\end{array}
$$

We prove this from blow-up relations. (Another reference ?)

Connection with ABJ theory

- [Bonelli Grassi Tanzini 17] proposed

$$
\begin{equation*}
\tau_{\mathrm{BGT}}(u \mid z)=\sum_{n \in \mathbb{Z}+j / 2} \mathcal{Z}\left(u q^{2 n}, q, q^{-1} \mid z\right) . \tag{32}
\end{equation*}
$$

Here $|q|=1$, the function \mathcal{Z} is redefined by adding certain (non-perturbative) corrections, $s=1$.

- By the topological string/spectral theory duality [Grassi Hatsuda Marino 2014] the function $\tau_{\text {BGT }}$ essentially equals to a spectral determinant of an operator

$$
\begin{equation*}
\rho=\left(e^{\hat{p}}+e^{-\hat{\rho}}+e^{\hat{x}}+m e^{-\hat{x}}\right)^{-1} . \tag{33}
\end{equation*}
$$

Here operators \hat{x}, \hat{p} satisfy commutation relation $[\hat{x}, \hat{p}]=i \hbar$.
Parameters related by $\hbar=\frac{4 \pi^{2} i}{\log q}, m=\exp \left(\frac{-\hbar \log z}{2 \pi}\right)$.

- Denote by $\equiv(\kappa, z)=\operatorname{det}(1+\kappa \rho)$ a spectral (Fredholm) determinant of the ρ.

$$
\begin{equation*}
\tau_{\mathrm{BGT}}(u \mid z)=Z_{\mathrm{CS}}(z) \equiv(\kappa, z) . \tag{34}
\end{equation*}
$$

The auxiliary function Z_{CS} is given in by an explicit expression and satisfy

$$
\begin{equation*}
\overline{Z_{\mathrm{CS}}(z)} \underline{Z_{\mathrm{CS}}(z)}=\left(z^{1 / 4}+z^{-1 / 4}\right) Z_{\mathrm{CS}}^{2}(z) . \tag{35}
\end{equation*}
$$

Connection with ABJ theory: Wronskian-like relations

- In the special case $z=q^{M}, M \in \mathbb{Z}$ the spectral determinant of the operator ρ simplifies and equals to the grand canonical partition function of the ABJ theory.
- 三 (κ, z) can be factorised according to the parity of the eigenvalues of ρ

$$
\begin{equation*}
\equiv(\kappa, z)=\Xi^{+}(\kappa, z) \bar{\Xi}^{-}(\kappa, z) . \tag{36}
\end{equation*}
$$

It was conjectured in [Grassi Hatsuda Marino 2014] that functions Ξ^{+}, Ξ^{-} satisfy additional (Wronskian-like) relations

$$
\begin{align*}
& i z^{1 / 4} \bar{\Xi}_{1}^{+} \overline{\bar{\Xi}_{1}^{-}}+\overline{\underline{\Xi}}^{+} \overline{\bar{\Xi}^{-}}=\left(i z^{1 / 4}+1\right){\overline{\Xi^{+}} \bar{\Xi}^{-} .} . \tag{37}
\end{align*}
$$

Here $\bar{\Xi}_{1}$ is Bäcklund transformation of the $\bar{\Xi}$, in terms of κ it is $\kappa \rightarrow-\kappa$.

Connection with ABJ theory：Wronskian－like relations

－In the special case $z=q^{M}, M \in \mathbb{Z}$ the spectral determinant of the operator ρ simplifies and equals to the grand canonical partition function of the ABJ theory．
－三 (κ, z) can be factorised according to the parity of the eigenvalues of ρ

$$
\begin{equation*}
\text { 三 }(\kappa, z)=\Xi^{+}(\kappa, z) \Xi^{-}(\kappa, z) \tag{36}
\end{equation*}
$$

It was conjectured in［Grassi Hatsuda Marino 2014］that functions ミ $^{+}$， 三－$^{-}$ satisfy additional（Wronskian－like）relations

$$
\begin{align*}
& i z^{1 / 4} \overline{\bar{\Xi}_{1}^{+}} \bar{\Xi}_{1}^{-}-\overline{\bar{\Xi}^{+}} \bar{\Xi}^{-}=\left(i z^{1 / 4}-1\right) \bar{\Xi}^{+} \bar{\Xi}^{-} \\
& i z^{1 / 4} \overline{\bar{\Xi}_{1}^{+}}+ \tag{37}
\end{align*}
$$

Here $\bar{\Xi}_{1}$ is Bäcklund transformation of the \bar{Z} ，in terms of κ it is $\kappa \rightarrow-\kappa$ ．

Theorem（／Conjecture）

The equations（37）are equivalent to the blow－up relations，where $\Xi^{ \pm}=Z_{\mathrm{CS}}^{ \pm} \tau^{ \pm}$．
－Here $\overline{Z_{\mathrm{CS}}^{+}} \underline{Z_{\mathrm{CS}}^{-}}=\left(1+i z^{1 / 4}\right) Z_{\mathrm{CS}}^{+} Z_{\mathrm{CS}}^{-}, \quad Z_{\mathrm{CS}}^{+} \overline{Z_{\mathrm{CS}}^{-}}=\left(1-i z^{1 / 4}\right) Z_{\mathrm{CS}}^{+} Z_{\mathrm{CS}}^{-}$
－Topological string／spectral theory duality for the case $t=q^{2}$ ？

Discussion

- For Painlevé VI the simplest of the Nakajima-Yoshioka relations leads to

$$
\begin{align*}
\tau(\vec{\theta} ; \sigma, s \mid z)= & \tau\left(\vec{\theta}+\frac{1}{2} e_{23} ; \sigma, s \mid z\right) \tau\left(\vec{\theta}-\frac{1}{2} e_{23} ; \sigma, s \mid z\right) \\
& +\tau\left(\vec{\theta}+\frac{1}{2} e_{23} ; \sigma+1, s \mid z\right) \tau\left(\vec{\theta}-\frac{1}{2} e_{23} ; \sigma-1, s \mid z\right), \tag{38}
\end{align*}
$$

where $\vec{\theta}=\left(\theta_{0}, \theta_{t}, \theta_{1}, \theta_{\infty}\right), e_{23}=(0,1,1,0)$ and τ is the Painlevé $\mathrm{VI} c=1$ tau function.

- [Mironov, Morozov 2017] in case of resonances on $\vec{\theta}$ and σ the sum in the formula for Painlevé VI $c=1$ tau function becomes finite and τ is the Hankel determinant consisting of solutions of hypergeometric equations ($\beta=2$ matrix model)
For $c=-2$ the tau function in the resonance case is Pfaffian ($\beta=1$ or $\beta=4$ matrix model).
- Riemann-Hilbert problem.
- Symplectic fermions.

Thank you for the attention!

Calculation

$$
\begin{aligned}
& \sum_{n_{1}, n_{2} \in \mathbb{Z}} s^{n_{1}} \mathcal{Z}_{c=-2}^{+}\left(\sigma+n_{1}-n_{2} \left\lvert\, \frac{Z}{4}\right.\right) \mathcal{Z}_{c=-2}^{-}\left(\sigma+n_{1}+n_{2} \left\lvert\, \frac{Z}{4}\right.\right)= \\
& =\sum_{n_{1}, n_{2} \in \mathbb{Z} \mid n_{1}+n_{2} \in 2 \mathbb{Z}}+\sum_{n_{1}, n_{2} \in \mathbb{Z} \mid n_{1}+n_{2} \in 2 \mathbb{Z}+1}=\| n_{ \pm}=\frac{1}{2}\left(n_{1} \pm n_{2}\right)| |= \\
& =\sum_{n_{+} \in \mathbb{Z}} s^{n_{+}} \mathcal{Z}_{c=-2}^{+}\left(\sigma+2 n_{+} \left\lvert\, \frac{Z}{4}\right.\right) \sum_{n_{-} \in \mathbb{Z}} s^{n_{-}} \mathcal{Z}_{c=-2}^{-}\left(\sigma+2 n_{-} \left\lvert\, \frac{Z}{4}\right.\right)+ \\
& +\sum_{n_{+} \in \mathbb{Z}+1 / 2} s^{n_{+}} \mathcal{Z}_{c=-2}^{+}\left(\sigma+2 n_{+} \left\lvert\, \frac{Z}{4}\right.\right) \sum_{n_{-} \in \mathbb{Z}+1 / 2} s^{n-} \mathcal{Z}_{c=-2}^{-}\left(\sigma+2 n_{-} \left\lvert\, \frac{Z}{4}\right.\right)= \\
& =\sum_{n_{+} \in \mathbb{Z}} s^{n_{+} / 2} \mathcal{Z}_{c=-2}^{+}\left(\sigma+n_{+} \left\lvert\, \frac{z}{4}\right.\right) \sum_{n_{-} \in \mathbb{Z}} s^{n_{-} / 2} \mathcal{Z}_{c=-2}^{-}\left(\sigma+n_{-} \left\lvert\, \frac{z}{4}\right.\right),
\end{aligned}
$$

where the last equality follows from the

$$
\begin{gather*}
\mathcal{Z}^{+}\left(\sigma+n_{+}+1 / 2\right) \mathcal{Z}^{-}\left(\sigma+n_{-}\right)+\mathcal{Z}^{-}\left(\sigma+n_{+}+1 / 2\right) \mathcal{Z}^{+}\left(\sigma+n_{-}\right)=0, \quad n_{+}, n_{-} \in \mathbb{Z} \\
\tau(\sigma, s \mid z)=\tau^{+}(\sigma, s \mid z) \tau^{-}(\sigma, s \mid z) \tag{40}
\end{gather*}
$$

Relation to q-Painlevé VI

$$
\begin{align*}
& \overline{\tau_{0}^{+}} \underline{\tau_{0}^{-}}=\tau_{0}^{+} \tau_{0}^{-}-z^{1 / 4} \tau_{1}^{+} \tau_{1}^{-}, \quad \overline{\tau_{0}^{-}} \underline{\tau_{0}^{+}}=\tau_{0}^{+} \tau_{0}^{-}+z^{1 / 4} \tau_{1}^{+} \tau_{1}^{-} \tag{41}\\
& \overline{\tau_{1}^{+}} \underline{\tau_{1}^{-}}=\tau_{1}^{+} \tau_{1}^{-}-z^{1 / 4} \tau_{0}^{+} \tau_{0}^{-}, \quad \overline{\tau_{1}^{-}} \underline{\tau_{1}^{+}}=\tau_{1}^{+} \tau_{1}^{-}+z^{1 / 4} \tau_{0}^{+} \tau_{0}^{-} \tag{42}
\end{align*}
$$

Relation to q-Painlevé VI

$$
\begin{align*}
& \overline{\tau_{0}^{+}} \underline{\tau_{0}^{-}}=\tau_{0}^{+} \tau_{0}^{-}-z^{1 / 4} \tau_{1}^{+} \tau_{1}^{-}, \quad \overline{\tau_{0}^{-}} \underline{\tau_{0}^{+}}=\tau_{0}^{+} \tau_{0}^{-}+z^{1 / 4} \tau_{1}^{+} \tau_{1}^{-}, \tag{41}\\
& \overline{\tau_{1}^{+}} \underline{\tau_{1}^{-}}=\tau_{1}^{+} \tau_{1}^{-}-z^{1 / 4} \tau_{0}^{+} \tau_{0}^{-}, \quad \overline{\tau_{1}^{-}} \underline{\tau_{1}^{+}}=\tau_{1}^{+} \tau_{1}^{-}+z^{1 / 4} \tau_{0}^{+} \tau_{0}^{-} . \tag{42}
\end{align*}
$$

Theorem

Consider the tuple $\left(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}, \tau_{5}, \tau_{6}, \tau_{7}, \tau_{8}\right)=\left(\tau_{0}^{+}, \tau_{0}^{-}, \tau_{1}^{+}, \tau_{1}^{-}, \underline{\tau_{0}^{+}}, \underline{\tau_{0}^{-}}, \underline{\tau_{1}^{+}}, \underline{\tau_{1}^{-}}\right)$. This tuple is a solution of q-Painlevé VI in tau fromin the case $q^{\theta_{0}}=q^{\theta_{t}}=q^{\theta_{1}}=q^{\theta_{\infty}}=i$.

Relation to q-Painlevé VI

$$
\begin{align*}
& \overline{\tau_{0}^{+}} \underline{\tau_{0}^{-}}=\tau_{0}^{+} \tau_{0}^{-}-z^{1 / 4} \tau_{1}^{+} \tau_{1}^{-}, \quad \overline{\tau_{0}^{-}} \underline{\tau_{0}^{+}}=\tau_{0}^{+} \tau_{0}^{-}+z^{1 / 4} \tau_{1}^{+} \tau_{1}^{-}, \tag{41}\\
& \overline{\tau_{1}^{+}} \underline{\tau_{1}^{-}}=\tau_{1}^{+} \tau_{1}^{-}-z^{1 / 4} \tau_{0}^{+} \tau_{0}^{-}, \quad \overline{\tau_{1}^{-}} \underline{\tau_{1}^{+}}=\tau_{1}^{+} \tau_{1}^{-}+z^{1 / 4} \tau_{0}^{+} \tau_{0}^{-} . \tag{42}
\end{align*}
$$

Theorem

Consider the tuple $\left(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}, \tau_{5}, \tau_{6}, \tau_{7}, \tau_{8}\right)=\left(\tau_{0}^{+}, \tau_{0}^{-}, \tau_{1}^{+}, \tau_{1}^{-}, \underline{\tau_{0}^{+}}, \underline{\tau_{0}^{-}}, \underline{\tau_{1}^{+}}, \underline{\tau_{1}^{-}}\right)$. This tuple is a solution of q-Painlevé VI in tau fromin the case $q^{\theta_{0}}=q^{\theta_{t}}=q^{\theta_{1}}=q^{\theta_{\infty}}=i$.

Conjecture (Jimbo Nagoya Sakai 2017)

The q-Painlevé VI equation is solved by 5d SU(2) Nekrasov partition functions with $N_{f}=4$.

Conjecture

$$
\begin{equation*}
\mathcal{Z}_{N_{f}=4}\left(i, i, i, i q^{ \pm 1 / 2}, u ; q^{-1}, q \mid z^{1 / 2}\right)=\mathcal{Z}_{N_{f}=0}\left(u ; q^{-1}, q^{2} \mid z\right) \tag{43}
\end{equation*}
$$

